If it's not what You are looking for type in the equation solver your own equation and let us solve it.
225x^2-150x-1=0
a = 225; b = -150; c = -1;
Δ = b2-4ac
Δ = -1502-4·225·(-1)
Δ = 23400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23400}=\sqrt{900*26}=\sqrt{900}*\sqrt{26}=30\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-30\sqrt{26}}{2*225}=\frac{150-30\sqrt{26}}{450} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+30\sqrt{26}}{2*225}=\frac{150+30\sqrt{26}}{450} $
| 1/3m+2/3m=16-m | | -3(x-12)=-6(x-9) | | -16d=-17d-11 | | 7x+21/7=(2x-6)/2 | | 3p-1=5p-5=14-4p | | x-62=23 | | 56=281-w | | 2x(x)=250 | | (m+12)^2=49 | | x-415.65=112.99 | | x-415.65=$112.99 | | 2(x+7)=8(x-5) | | 6(x-11)=2(3x+8) | | x-$415.65=$112.99 | | 4+18c=17c+20 | | 5y+6=9y-30 | | 11x^2+26x+27=0 | | -18s+14=-17s | | e-5=8 | | 17-5x=50=6x | | 12(x-3)=6(x+6) | | 80=107+x | | 20-13r=-20-15r | | 7w=87,w=12 | | 900x^2-600x+4=0 | | -11/5b-2/5=-2 | | 7w=87,w=13 | | 900x^2-600x+1=4 | | k^2-2k-8k=0 | | y+20=-9y | | 1/2x+5/4=9/8x+5/24 | | 180-x=360-4x+6 |